The role of carbonic anhydrase in C₄ photosynthesis and mesophyll conductance

Joseph Crawford, Asaph B. Cousins

Joseph.crawford@wsu.edu

School of Biological Sciences, Washington State University, Pullman, WA 99164

Introduction

Figure 1: Role of carbonic anhydrase in C₄ photosynthesis.

- C₄ photosynthesis concentrates CO₂ around Rubisco by biochemically shuttling four-carbon acids to bundle sheath cells. Atmospheric CO₂ enters the leaf airspace and diffuses into the mesophyll cells where it is substrate for carbonic anhydrase (CA)
- CA rapidly catalyzes the formation of HCO₃ which is subsequently fixed by PEP carboxylase (PEPC)
- At ambient [CO₂] and 25°C a maize double knockdown mutant of the two mesophyll CA genes (*ca1ca2*) did not limit photosynthesis despite *ca1ca2* plants having 3% of wild-type CA activity (Studer et al.,2014).
- •The role of CA in the conductivity of CO₂ movement into mesophyll cells (mesophyll conductance– g_m) in C₄ plants is unknown.
- Methods to measure g_m in C_4 plants are influenced by CA. Therefore, the *ca1ca2* mutants provide the unique opportunity to evaluate the sensitivity of g_m methods.

Objectives

- 1.Determine if CA limits photosynthesis at elevated temperatures during C₄ photosynthesis
- 2.Quantify the contribution of CA to substrate availability for C₄ photosynthesis
- 3.Determine the role of CA in C₄ mesophyll CO₂ conductance

Materials and Methods

- Wild-type and ca1ca2 plants were grown under elevated CO₂ (1%), 500 μ mol m⁻² s⁻¹ PPFD, 16 hr days, and 31/28°C day/night regime
- Assimilation vs intercellular CO_2 (A/C_i) curves were measured on *ca1ca2* and wild -type maize plants from 10 to 40°C at 5°C increments
- Biochemical assays of Rubisco, PEPC, and CA activity were measured in vitro on crude leaf extract
- A/C_i curves at 15, 25, and 35°C were coupled with on-line measurements of $\Delta^{13}CO_2$, $\Delta^{18}CO_2$ and $\delta^{18}O$ of transpired water

Results

Figure 2: Mean *in vitro* enzyme activity for *ca1ca2* and WT plants (n=8) for A) PEPC, B) Rubisco, and C) the rate constant for carbonic anhydrase at 25°C. *** statistically significant difference from t-tests at alpha = 0.05.

•ca1ca2 disruptions only reduced CA activity

Figure 3: ca1ca2 and WT in vivo Vp_{max} calculated from 10 to 40°C by solving for the initial slope of A/Ci curves modeled with the temperature responses of C_4 photosynthetic parameters from Boyd et al., 2015. Infinite g_m assumed. n=4

- •Suggests PEPC limitation at higher temperatures in *ca1ca2* plants
- Differences could be attributed to CO₂, HCO₃, or PEPC

Figure 4: Gas exchange measurements vs Ci curves for ca1ca2 and WT at 15, 25, and 35°C. A) Net CO_2 assimilation rate, B) stomatal conductance, and C) transpiration efficiency calculated as net CO_2 assimilation/stomatal conductance.

•CA mutants lose more water per CO₂ fixed because of reduced assimilation rate, not stomatal conductance

Figure 5: Gas exchange and online measurements of leaf $\Delta^{13}CO_2$ and $\Delta C^{18}O_2$.

- •Differences in Δ¹³C suggest that lack of CA increases rates of PEPC activity to CO₂ hydration by CA and limits HCO₃ supply to PEPC
- Differences in Δ^{18} O suggest that CO_2 and cytosolic H_2 O are not in isotopic equilibrium

Figure 6: Mesophyll conductance measurements with increasing temperature and pCO_2 on ca1ca2 and WT plants. $\Delta^{18}O-g_m$ (A-C), in vitro V_{Pmax} CA Saturated- g_m (D-F), and in vitro V_{Pmax} CA Limited- g_m (G-I)

- • Δ^{18} O-g_m method is sensitive to CA activity and drastically underestimates g_m
- •CA exhibits little effect on calculated g_m when modeled with *in vitro* enzyme data

Conclusions

- CA limits C₄ photosynthesis more at higher temperatures by substrate limitation to PEPC
- •CA is not a large component of mesophyll conductance in C₄ maize
- •Methods to measure g_m in C₄ plants should cautiously consider the effects of CA on HCO₃ availability